Plastics Decorating



High-Tech Contract Decorating at Emerald Corporation

Show Preview
2012 SGIA Expo Show Preview

Ask the Expert
Plastics Surface Energy Wetting Test Methods

Scratch-resistant in One Step

Letter from the Chair
TopCon Rolls Through Indy
Digital Decorating Webinar Scheduled for August 28

Ultrasonic Welding: The Need for Speed Control

How to Close Sales that are Over the Budget


February 12-14
PLASTEC West, Anaheim Convention Center, Anaheim, CA,

March 19
Plastics Crossroads Summit, Sheraton Hotel, Anaheim, CA,

March 20-21
PLASTEC South, Orange County Convention Center, Orlando, FL,

April 8
AWA DecTec USA, Orange County Convention Center, Orlando, FL,

April 22-24
SPE ANTEC® 2013, Duke Energy Convention Center, Cincinnati, OH,

June 18-20
HBA, June 18-20, Jacob K. Javits Convention Center, New York City, NY,

June 18-20
PLASTEC East, , Pennsylvania Convention Center, Philadelphia, PA,


Join Our Email List
For Email Marketing you can trust


Copyright 2010 Peterson Publications, Inc.

Plastics Decorating Magazine 
2150 SW Westport Dr., Suite 101 
Topeka, KS 66614 
(785) 271-5801Ā  Fax (785) 271-6404


Q&A: Laser Marking


By Scott Sabreen

Question: We are marking large alphanumeric characters (1” height and 1/8” stroke width) using an Nd:YAG laser. The marking time is 45 seconds. Can you suggest ways to reduce the cycle time?

Answer: There are several techniques that can decrease marking cycle time while achieving high resolution quality.

  • First, adjust the beam expander (telescope) to increase the spot size. By adjusting the beam expander, you will be able to maintain the proper focal distance and laser output beam characteristics. This is preferable to manually adjusting the laser distance beyond its maximum focal point.
  • Second, select a larger aperture – 2.0mm versus 1.2mm for example – which will allow broader vector lines to be drawn.
  • Third, use vertical bi-directional or serpentine vector line fill to minimize the laser reposition time (sometimes referred to as galvo settling times) vs.unidirectional fill.
  • Fourth, you may be able to eliminate the image outline and use “fill-only”. The line separation distance – center point to center point – may need to be adjusted to eliminate voids in the filled character.

Once the suggested changes have been made, you will likely be able to increase your marking speed with optimally filled vector lines.

Question: Can you explain the difference in “Wall Plug Efficiency” between Nd:YAG lasers and fiber lasers?

Answer: A standard arc-lamp Nd:YAG laser, as sold, is rated at 75-100 watts total raw output power. This is different than the power density (watts/cm2) at the focused work site. YAG lasers have poor wall plug efficiency in the range of 1.5 percent. As a result, 985 watts of each available 1,000 watts is converted to wasted heat and not useful laser output power.

Fiber lasers, by design, generate less heat and manage the heat generated much more effectively. Fiber lasers have wall plug efficiency in the range of 35 percent. Since the laser light is always contained in a fiber, there are no additional sources of loss inside the laser cavity. Therefore, a 20-watt fiber laser produces an average of 20 watts of power.

Scott Sabreen is the founder and president of The Sabreen Group, Inc., a plastics engineering consulting firm. He is a board member for the Society of Plastics Engineers Decorating/Assembly Division, technical editor for Plastics Decorating and expert engineer for Omnexus/SpecialChem, Intota-Guideline and Nerac. Sabreen may be reached via email at